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Entangled Quantum States
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Entangled quantum states are an important component of quantum computing
techniques such as quantum error correction, dense coding, and quantum
teleportation. We determine the requirements for a state in the Hilbert space C°
to be entangled and a solution to the corresponding factorization problem if this
is not the case.

Entanglement is the characteristic trait of quantum mechanics which
entails its departure from classical physics. We consider the entanglement of
pure states. Thus a basic question in quantum computing is as follows: given
anormalized state |u) in the Hilbert space C°, can two normalized states |x)
and |y) in the Hilbert space C2 be found such that

X) @ [y) = [u) (D

where ® denotes the Kronecker product [1, 2]. In other words, what is the
condition on |u) such that |x) and |y) exist? If no such [x) and |y), exist then
luy is said to be entangled. The measure for entanglement for pure states
E(u) is defined as follows [3, 4]:

E(u) := Spa) = Slpe)
where the density matrices are defined as

pa = Trgluxul,  pg:= TraluXul

Linternational School for Scientific Computing, Rand Afrikaans University, PO. Box 524,
Auckland Park 2006, South Africa; e-mail: WHS@NA.RAU.AC.ZA

2755
0020-7748/00/1200-2755$18.00/0 © 2000 Plenum Publishing Corporation



2756 Steeb and Hardy

and

Sp) ;= —Trplog, p

Thus0 = E = 1. If E = 1, we call the pure state maximally entangled. If
E = 0, the pure state is not entangled. For example, the vector

Ta11-1-1-111=-1 —11 ©= 1
3 Bl1) VBl

is not entangled, whereas the vector
i(100000001)T
2

is entangled.

First we we derive the condition for a normalized state in C° to be not
entangled, using the Kronecker product in Eq. (1). Then we derive for this
case that E(u) = 0 follows. We use the representation

Uy X1 Y1
w=lu] K={%] =¥
Us X3 Y3

Uy

where |u), |x), and |y) are normalized, i.e., (ulu) = (x|x) = (y|ly) = 1. Since
luy is normalized, at least one of Uy, W, . . ., Ug is nonzero. The same holds
for [x) and |y). From the normalization conditions and (1) we find

9
2 > =1 (2
k=1
Xq2 + [ + [xaf? = 1 3
|Y1’2 + ‘)/2|2 + ‘ys‘z =1 (4)
X1Y1 = Uy, X2Y1 = Ug, X3y1 = Uy (5)

X1Y2 = Uy, X2Y2 = Us, X3Y> = Ug (6)
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X1Y3 = Us, X2Y3 = Us,

From (5)—(7) we find that the condition on

UUs =
UlUs =
UUs =
Uyl =
Uglg =
UsUg =
UyUg =
Ulg =
UpUg =

From (8)—(16) we find

UiUsUg = UjUgUg = UoUgUg =

This equation is useful for simplification. From (3)—(7) we obtain

UpUy
UsUyg
UsUs
UsUy
UgU7
UsUg
UoUy
UsUy

UsUg

UoUgU; = UzUgUg = UsUsUy

X3Y3 = Ug

|lu) is given by

X2 = [ugf? + [upl* + [ugf?

%2 = [ugl? + [us|? + |ugf?

[¥al? = [ur]? + [ugl? + |uof?

Vil2 = [ugf? + [ual® + ugf?

Vol? = |up|? + Jus|? + |ug|?

V3|2 = [ugl? + [ug|® + ugl?

Let

o i= arg(xy), ay = arg(Xp), o3 .

Br:=arg(y), Bz:=ag(yd, Bs:

Now Eq. (5)—(7) become

oy + By = arg(uy)
oy + B2 = ag(uy)
ag + Bs = arg(us)
ap + B = ag(u,)

mod 21
mod 2
mod 21
mod 21

arg(xs)
arg(ys)
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ap + B, = arg(us) mod 2w (29)

ap + B3 = arg(us) mod 2w (30)

az + B1 = arg(u;) mod 2 (3D

az + B, = arg(ug) mod 27 (32

az + B3 = arg(ug) mod 21 (33)

Suppose that (8)—(16) hold; then a solution is given by

X = (VIwf? + [ugl? + [ug?) e (34)

Xo = (VIual? + us|? + [ug]?) €2 (35)

X3 = (V[ur]? + Jugl? + [ugl?) €2 (36)

y1 = (VI + [ugl? + Juq?) e (37)

Yo = (V[U* + Jusl? + [ugf?) P2 (39)

Y3 = (VIugl? + ugl? + [ugl?) € (39)

o =0, ap = arg(Us) — Bu, az = arg(uy) — B1 (40)

By = arg(uy), B2 = arg(W), Bz = arg(us)

Next we describe the relation between conditions (8)—(16) and the measure
of entanglement E(u) introduced above. Since

Ut Ul Uz Uity Uls Ulls Uil UpUg  Uplg
Ulp Ul WUz Ul Uplls  Upls  Ullz  Uplg  Uplg
Ul Ugll; Ugllz Uglly Uglls Uglls Uiz Ul Ugllg
UgUp Uglz UgUz Ugly UgUs Ugls Uglz  Uglg  Uglg
| u)u ‘ = | UsU;y UsUp Uslz UsUz UsUs Uslg UsU7 Uslg Uslg
Ul Ulh Ul Uz Ul Ul Ulh Ul Uclg
UUp Udl; UUs WU Udls UUg Ul UZUg  UpUg
Ugllp Ugl; Ugls Ugl; Uglls Uglls Ugll; Uglls Uglg
Uy Ugll; Ugls Ugls Uglls Ugls Ugll; Uglg  Uglg
(41)

we find
pa i= Trg(lu)Xul)

Ul + Ul + Uslz  Ugllz + Ul + Uslls  Uplz + Ul + Uslg
= | UgU1 + UsUz + Ugliz  Uglz + UsUs + Ugls  Usll; + UsUg + Uglg (42)
UUp + Ugll + Uglz Uyl + Uglis + Ugls Uyl + Uglig + Uglg
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pg 1= Tra (lu)Xul)

Uls + Ugly + Ulz Ul + Ugls + Uzl Ul + Ugls + Uzlg
= [ UUp + Usly + Ugll;  Uplz + Usls + Uglls  UpUsz + UsUs + Ugllp (43)
Uslp + Uglly + Ugllz  Uslz + Ugls + Uglls  UsUz + UgUs + Uglg

The 3 X 3 density matrices pa and pg given by (42) and (43) are Hermitian
and have the same eigenvalues. Thus the eigenvalues 4, \,, and \; are real.
The matrices are also positive semidefinite, i.e., for al |[a) € C* we have
(alpagl@y = 0. Thus the eigenvalues are nonnegative. Since |u) is normalized
we have

Tr(Tralu)ul) = 1 (44)

Tr(Trglu)ul) = 1 (45)
and therefore

AM+tN+A=1 (46)

where we used the fact that the trace of an n X n matrix is the sum of the
eigenvalues. Thus 0 = Ay, Ny, A3 = 1. Now if Eq. (17) holds, we have

det(Tra(|luxu])) = det(Trg(JuXul)) = 0 (47)

Since the determinant of an n X n matrix is the product of the eigenvalues
we find that at least one eigenvalue is equa to 0. Since, using (8)—(16),

Aidz + MAz + NoAz = (pa)1a(pa)22 + (Pa)1i(Pa)ss 1 (Pa)22(pa)ss
—(pA)12(pa)21 — (PA)13(PA)31 — (PA)23(PA)32
= (pe)r1(Pe)22 + (Pe)11(pe)3s + (PB)22(Pe)3s
= (pe)12(Pe)21 — (Pe)13(pe)31 — (PB)23(Pe)32
=0 (48)

two eigenvalues must be zero. We applied SymbolicC++ [5] to do this
calculation. The last eigenvalue is 1. The entanglement can be written as

E(U) = _()\1 |0g2 )\1 + )\2 |0g2 )\2 + )\3 |092 )\3) (49)

Using log, 1 = 0, 0log, 0 = 0O, we find that E(u) = O if conditions (8)—(16)
are satisfied. Conversely, we can prove that if E(u) = 0, conditions (8)—(16)
follow. The proof can be extended from 3 to n dimensions.

For \; = X\, = %, A3 = 0 (and permutations) the entanglement E(u) has
a maximum and we find E(u) = 1. As an example, consider the normal-
ized state
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1

|¢'>:\/§

(10000000 1)7

Obviously Eq. (15) does not hold for [is). We find

1 1 00

PA:PBZE 0 00

0 0 1
1 1 00
pAIngpA:_E 0 00
0 0 1

Thus S(pa) = 1. Thus this state is maximally entangled.

Finally, we mention that Horodecki et al. [6] and Peres [7] investigated

whether agiven mixed stateis entangled (inseparable) or nonentangled (sepa-
rable), using the density matrix p. They started from the following definition:
a state supported on a Hilbert space # = €, ® g is separable if and only
if it can be written in (or approximated by) the form

K k
P:;l pile) @ [fixe| ® (fil, ;lpi =1

where |e) and | f;) are normalized states in the Hilbert spaces %, and ¥z,
respectively, andp, =0( = 1,...,n).
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